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Statistical Quality Control




Definition of Quality




Quality means fitness for use.

*This is a traditional definition
Quality of design

Quality of conformance




DIMENSIONS OF QUALITY
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DIMENSIONS OF QUALITY




DIMENSIONS OF QUALITY




QUALITY CHARACTERISTICS OF A
PRODUCT




QUALITY CHARACTERISTICS
OF A PRODUCT

Every product possesses a number of elements that jointly describe what the user or con-
sumer thinks of as quality. These parameters are often called quality characteristics.
Sometimes these are called critical-to-quality (CTQ) characteristics. Quality character-
istics may be of several types:

1. Physical: length, weight, voltage, viscosity
2. Sensory: taste, appearance, color
3. Time Orientation: reliability, durability, serviceability

Since variability can only be described in statistical terms, statistical methods play a
central role i quality improvement efforts. In the application of statistical methods to
quality engineering, 1t is fairly typical to classify data on quality characteristics as either
attributes or variables data. Variables data are usually continuous measurements, such as
length, voltage, or viscosity. Attributes data, on the other hand, are usually discrete data,
often taking the form of counts. We will describe statistical-based quality engineering
tools for dealing with both types of data,

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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QUALITY - CONTROL -
SPECIFICATIONS
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QUALITY & QUALITY
SPECIFICATIONS




QUALITY OF A PRODUCT & PRODUCTION




QUALITY AND SPECIFICATIONS
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STATISTICS AND QUALITY

|

5 statistics related to Quality?

_more recent term defines guality as inversely proportional to the
variability of the characteristics of the production process which
define the quality of a product .

We should therefore aim at reducing this variability of the qualitative
characteristics which are related to the dimensions of quality and in this
way, Tnally the way in which we perceive as consumers the quality of the
product itselr.

l_ll-”t';_"'j ..l :'-:ll::":-'”-|
=tates

Ficure 1-2  Distributions of critical dimensions for

[ransmissions. Figure 1-1  Warranty costs for fransmissions.



Quality improvement is the reduction of variability in processes and products.

 The transmission example illustrates the utility of this definition

« An equivalent definition is that quality improvement is the
elimination of waste. This is useful in service or transactional
businesses.

20




STATISTICS AND QUALITY

This 1s a modern definition of quality
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Acceptance Sampling

o A ‘4 ¢ -4
oV /wf/g//,,/é%/ﬁf//%w/n
sitective /%/%/QW////%”// ‘hat
VY% INSPECLION/ LES

U ASHEU

AV E é//// mred o Y90 N

_
/.

¢ % 9 4%,
l/ E,
. XAt s
2 /,//’ % 7 an /| +Fhic
8}%} nere Are larl] : NNerl s
TYY\r Y ,/ 7 . 2% Y] ] & ///////// {////4/ // ..:::E:;:::
nmpraiuila ore O uneconoinmn
2 :

DSTITUONIVe 1ests ¢ ¢ ge810¢ //f%/ﬁ/
%o //// xC 0o '//;1/7//1,47 AN C o % ///
2 /4/57//4,7/77/%”/ all




Acceptance Plans
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Single-Sampling Plan

Lot of N Items

Random
Sample of
N - n ltems n ltems
¢’ Defectives
L L L REE R e E Inspect n ltems

Found in Sample

c’'<¢

n Nondefectives

Reject Lot Accept Lot
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Double-Sampling Plan

Lot of N Items

Random
Sample of
N —n, ltems n, ltems
Replace
Defe

g
@]
=
<
(D
\A

A

Reject Lot - .
Continue RUGFEAINGE)




Double-Sampling Plan

Sample of
n, Items

r, Nondefectlvey

‘.‘ A v (CJ)—I[- CZ)):CZ
\—‘ 4 Accept Lot




NEGATIVE CONSEQUENCES IN USING
ACCEPTANCE SAMPLING (SOLELY)
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Quality Control of the Final Product related to a Qualitative Characteristic (screw, length of a screw))
Traditional Sampling Control of the Final Product

Production
Process

International Practices

—

Tolerance Tolerance
Region Region
Off- Specification ~ Product within Qualitative Product Product within Off- Specification
Product Specifications Specifications Product

Réputation Reputatior)('
Cost | | Cost

The product can reach the end user only if it is up to the orange region

Red regions mean products inappropriate for the market or

that the product must be reprocessed
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An example of a process flow without the use

of Statistical Process Control (SPC) Product || Producton [ Final.
18 Measurements in out of Specification Limits
Lead to Non-Acceptable Products

16
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An example of a process flow with the

use of Statistical Process Control (SPC) B 2 e
18
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Possibly
g Accepted Product
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An example of a process flow with the
use of Statistical Process Control (SPC) - R

Algpyaaia
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Walter A. Shewart (1891-1967)
 Trained in engineering and physics
 Long career at Bell Labs

 Developed the first control chart
about 1924

UCL

Sample average
O
(.

LCL
BFIGURE 1.4 A typical control

Time (or sample number) chart.

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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What 1s Experimental Design?

The design of experiments (DOE, DOX, or experimental design) is the design
of any task that aims to describe or explain the variation of information under
conditions that are hypothesized to reflect the variation.

In its simplest form, an experiment aims at predicting the outcome by
introducing a change of the preconditions, which is represented by one or
more independent variables, also referred to as "input variables" or "predictor
variables."

The change in one or more independent variables is generally hypothesized to
result in a change in one or more dependent variables, also referred to as
"output variables" or "response variables."

The experimental design may also identify control variables that must be held
constant to prevent external factors from affecting the results.

Experimental design involves not only the selection of suitable independent,
dependent, and control variables, but planning the delivery of the experiment
under statistically optimal conditions given the constraints of available
resources.

Correctly designed experiments advance knowledge in the natural and social
sciences and engineering. Other applications include marketing and policy 41
making.




What 1s Experimental Design?

Experimental design includes both
- Strategies for organizing data collection

- Data analysis procedures matched to those data
collection strategies

Classical treatments of design stress analysis
](orocedures based on the analysis of variance

ANOVA)

Other analysis procedure such as those based on
hierarchical linear models or analysis of
aggregates (e.g., class or school means) are also
appropriate




Why Do We Need Experimental
Design?

Because of variability

We wouldn’t need a science of experimental design if

- If all units were 1dentical
and

- If all units responded identically to treatments

We need experimental design to control variability so
that treatment effects can be identified




The Father of DOE

R. A.FISHER 1929




Develop Experimental Question
or Hypothesis

Define Variables

Treatments Controls Responses
Variables Variables with no Measurements
hypothesized to influence, or a needed to answer
influence response|| predicatble influence | | the experimental
on response question

Define Experimental and Sample Units

Experimental Units Sample Units
Treatment and control Units that will be
units to be randomzied measured

Estimate Sample Size

Error Estimate
A priori assumption from previous work
need to estimate sample size

Randomization and Layout









BASICS OF STATISTICS

Definition: Science of collection, presentation, analysis, and reasonable
interpretation of data.

Statistics presents a rigorous scientific method for gaining insight into data. For
example, suppose we measure the weight of 100 patients in a study. With so
many measurements, simply looking at the data fails to provide an informative
account. However statistics can give an instant overall picture of data based
on graphical presentation or numerical summarization irrespective to the
number of data points. Besides data summarization, another important task of
statistics is to make inference and predict relations of variables.

€



A TAXONOMY OF STATISTICS

[ Statistical Methods ]

[ Descriptive Methods ] Inferential Methods

univariate hivariate multivariate applied to meang [ to other statistics ]

dep.groups

relative
position ANOWA

correlation

multiple
regression

regression
{prediction)




STATISTICAL DESCRIPTION OF DATA

= Statistics describes a numeric set of data by its
= Center
= Variability
= Shape

= Statistics describes a categorical set of data by
= Frequency, percentage or proportion of each category




SOME DEFINITIONS

Variable - any characteristic of an individual or entity. A variable can take
different values for different individuals. Variables can be categorical or
guantitative. Per S. S. Stevens...

* Nominal - Categorical variables with no inherent order or ranking sequence such as names
or classes (e.g., gender). Value may be a numerical, but without numerical value (e.g., I, I, IlI).
The only operation that can be applied to Nominal variables is enumeration.

* Ordinal - Variables with an inherent rank or order, e.g. mild, moderate, severe. Can be
compared for equality, or greater or less, but not how much greater or less.

* Interval - Values of the variable are ordered as in Ordinal, and additionally, differences
between values are meaningful, however, the scale is not absolutely anchored. Calendar
dates and temperatures on the Fahrenheit scale are examples. Addition and subtraction, but
not multiplication and division are meaningful operations.

* Ratio - Variables with all properties of Interval plus an absolute, non-arbitrary zero point, e.g.
age, weight, temperature (Kelvin). Addition, subtraction, multiplication, and division are all
meaningful operations.

()



SOME DEFINITIONS

Distribution - (of a variable) tells us what values the variable takes and
how often it takes these values.
- Unimodal - having a single peak
- Bimodal - having two distinct peaks
- Symmetric - left and right half are mirror images.




FREQUENCY DISTRIBUTION

Consider a data set of 26 children of ages 1-6 years. Then the frequency
distribution of variable ‘age’ can be tabulated as follows:

Frequency Distribution of Age

Age 1 2 3 4 5 6
Frequency 5 3 I 5 4 2

Grouped Frequency Distribution of Age:

Age Group 1-2 3-4 5-6

Frequency 8 12 6




CUMULATIVE FREQUENCY

Cumulative frequency of data in previous page

Age 3 4 5 6
Frequency 7 5 4 2
Cumulative Frequency 15 20 24 26

Age Group 1-2 3-4 5-6

Frequency 8 12 6

Cumulative Frequency 8 20 26




% of Population over 65—Data

Alabama 13 |Louisiana 11 [Ohio
Alaska 5 |Maine 14 |Oklahom
Arizona 13 |Maryland 11 |Oregon
Arkansas 15 |Mass 14 |(Penn
California 11 [Michigan 12 |RIsland
Colorado 10 |[Minnesota 12 |S Caroline
Connecticuf 14 |Mississippi 12 |S Dakota
Delaware 13 |Missouri 14 |Tennesse
Florida 19 [Montana 13 |Texas
Georgia 10 [Nebraska 14 |Utah
Hawaii 13 |Mevada 11 |Vermont
ldaho 11 [N Hampshirr 12 |Virginia
lllinois 13 [N Jersey 14  |Washingt
Indiana 13 |N Mexico 11 (W Virginie
lowa 15 [N York 13 [Wisconsir
Kansas 14 |N Carolina 13 |Wyaqmin
Kentucky 13 [N Dakota 15




% of Population over 65—Dot Plot

Percent of Population over 65 years of Age
In the 50 States

| | | | | | | | |
4 6 8 10 12 14 16 18 20
Source: Statistical Abstract of the US

x-axis: Number in % to nearest integer




% of Population over 65—Data

Fre-
Class Tally guency

4 <x< 6 %

6 <Xx< 8 %

10 <x< 12 %

12 <x< 14 %

14 <Xx< 16 %

16 <Xx< 18 %
18 <x< 20 %

T & m m T O W >

Totals




% of Population over 65—Data

Class Tally
A 4 <x< 6 % |
B 6 <X< 8 % 0
C 8 <x< 10 % I
D 10 £x< 12 % HH HHH
E 12 <Xx< 14 % HH HHH HHH HH
F 14 <Xx< 16 % HHE HE 1T
G 16 <Xx< 18 % 1
H 18 <x< 20 % I

Totals 50




DATA PRESENTATION

Two types of statistical presentation of data - graphical and numerical.

Graphical Presentation: We look for the overall pattern and for striking deviations
from that pattern. Over all pattern usually described by shape, center, and spread
of the data. An individual value that falls outside the overall pattern is called an
outlier.

Bar diagram and Pie charts are used for categorical variables.

Histogram, stem and leaf and Box-plot are used for numerical variable.




Data Presentation —Categorical
Variable

Bar Diagram: Lists the categories and presents the percent or count of individuals
who fall in each category.

Figure #rizznf Zzitgrfoi‘;t;jeas n Treatment | Frequency | Proportion Percent

Group (%)
2 ] 1 15 (15/60)=0.25 | 25.0
3 2 25 (25/60)=0.333 | 41.7
§ 12 :J 3 20 (20/60)=0.417 | 33.3
Z o - - Total 60 1.00 100

1 2 3
Treatment Group




Data Presentation —Categorical

Variable

Pie Chart: Lists the categories and presents the percent or count of individuals

who fall in each category.

Figure 2: Pie Chart of

0
3304 25%

42%

Subjects in Treatment Groups

01
W2
O3

Treatment | Frequency | Proportion Percent
Group (%)
1 15 (15/60)=0.25 25.0
2 25 (25/60)=0.333 41.7
3 20 (20/60)=0.417 33.3
Total 60 1.00 100




GRAPHICAL PRESENTATION —NUMERICAL VARIABLE

Histogram: Overall pattern can be described by its shape, center, and spread.
The following age distribution is right skewed. The center lies between 80 to
100. No outliers.

Figure 3: Age Distribution
Mean 90.41666667
16 Standard Error 3.902649518
o 14T _

£ Median 84
k) 12 +

Ug) 10 + Mode 84

< 8+ Standard Deviation 30.22979318

g 6 T Sample Variance 913.8403955
S 1

3 4 Kurtosis -1.183899591
2 4

0 Skewness 0.389872725

40 60 80 100 120 140 More Range 95

Age in Month Minimum 48

Maximum 143

Sum 5425

Count 60




HISTOGRAMS — USEFUL FOR LARGE DATA

= TABLE 3.2

Layer Thickness (fk) on Semiconductor Wafers

438
413
444
468
445
472
474
454
455
449

450
450
450
459
466
470
457
441
450
445

487
430
446
450
456
433
455
459
423
455

451
437
444
453
434
454
448
435
432
441

452
465
466
473
471
464
478
446
459
464

441
444
458
454
437
443
465
435
444
457

444
471
471
458
459
449
462
460
445
437

461
453
452
438
445
435
454
428
454
434

432
431
455
447
454
435
425
449
449
452

471
458
445
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Group values of the variable into bins, then count the number
of observations that fall into each bin

Plot frequency (or relative frequency) versus the values of
the variable

IE'FH
Chapter 3 @



M
-
I

Frequency

r—l
-
!

0
405 415 425 435 445 455 465 475 485 495
Metal thickness

B FIGURE 3.3 Minitab histogram for the
metal layer thickness data in Table 3.2.
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ADDITIONAL MINITAB GRAPHS

15 100 [~

—
o

Frequency
Frequency
o
(@]
I

o

0
A10 420 430 440 450 460 470 480 490
Metal thickness

B FIGURE 3.5 A cumulative frequency

plot of the metal thickness data from Minitab.

0
410 420 430 440 450 460 470 480 490
Metal thickness

B FIGURE 3.4 Minitab histogram with

15 bins for the metal layer thickness data.

Dol
Chapter 3 @
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= TABLE 3.3

Surface Finish Defects in Painted Automobile Hoods
]

6 1 5 7 8 6 0 2 4 2
5 2 - + | - | 7 2 3
4 3 3 3 6 3 2 3 4 5
5 2 3 4 4 2 2 3 S 7
5 4 5 S 4 5 3 3 3 12

10
Figure 3.6 is the histogram of the defects. Notice that the num-
ber of defects is a discrete variable. From either the histogram -
or the tabulated data we can determine %’
39 5
Proportions of hoods with at least 3 defects = 30 =0.78 3 5
L
and
Proportions of hoods with between 0 and .
11 0 5 10
2 defects=—=10.22
50 Defects
‘ ) ) . B FIGURE 3.6 Histogram of the number
These proportions are examples of relative frequencies. of defects in painted automobile hoods (Table 3.3).

.
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NUMERICAL PRESENTATION

A fundamental concept in summary statistics is that of a central value for a set
of observations and the extent to which the central value characterizes the
whole set of data. Measures of central value such as the mean or median must
be coupled with measures of data dispersion (e.g., average distance from the
mean) to indicate how well the central value characterizes the data as a whole.

To understand how well a central value characterizes a set of observations, let
us consider the following two sets of data:

A: 30, 50, 70

B: 40, 50, 60
The mean of both two data sets is 50. But, the distance of the observations from
the mean in data set A is larger than in the data set B. Thus, the mean of data
set B is a better representation of the data set than is the case for set A.

()



METHODS OF CENTER MEASUREMENT

Center measurement is a summary measure of the overall level of a dataset

Commonly used methods are mean, median, mode, geometric mean etc.

Mean: Summing up all the observation and dividing by number of observations.
Mean of 20, 30, 40 is (20+30+40)/3 = 30.

Notation:Let x;, X, ...X, are n observations of a variable

X. Then the mean of this variable,

n
in
X, + X, +o. X e

n n €

X =




METHODS OF CENTER MEASUREMENT

Median: The middle value in an ordered sequence of observations. That is, to
find the median we need to order the data set and then find the middle value.
In case of an even number of observations the average of the two middle
most values is the median. For example, to find the median of {9, 3, 6, 7, 5},
we first sort the data giving {3, 5, 6, 7, 9}, then choose the middle value 6. If
the number of observations is even, e.g., {9, 3, 6, 7, 5, 2}, then the median is
the average of the two middle values from the sorted sequence, in this case,
(5+6)/2=5.5.

Mode: The value that is observed most frequently. The mode is undefined
for sequences in which no observation is repeated.




MEAN OR MEDIAN

The median is less sensitive to outliers (extreme scores) than the mean and
thus a better measure than the mean for highly skewed distributions, e.g. family
income. For example mean of 20, 30, 40, and 990 is (20+30+40+990)/4 =270.
The median of these four observations is (30+40)/2 =35. Here 3 observations
out of 4 lie between 20-40. So, the mean 270 really fails to give a realistic
picture of the major part of the data. It is influenced by extreme value 990.




Skewed distributions

» Skewness refers to the asymmetry of the distribution

» A positively skewed

median
distribution 1s asymmetrical
and points in the positive i
direction. o
Mode = 70,000$ el
Median = 88,700% Y
Mean = 93,600% o
AT\ 5\\ bQ _-b'\\ ‘\\\\ \.\\\ \5\\ \\’\\ \_-(S _\;\\\\ :’\\ ‘\}\\
Ihd¢ome m 1.000s

‘mode < median < mean mode mean




METHODS OF VARIABILITY MEASUREMENT

Variability (or dispersion) measures the amount of scatter in a dataset.

Commonly used methods: range, variance, standard deviation, interquartile
range, coefficient of variation etc.

Range: The difference between the largest and the smallest observations. The
range of 10, 5, 2, 100 is (100-2)=98. It's a crude measure of variability.




METHODS OF VARIABILITY MEASUREMENT

Variance: The variance of a set of observations is the average of the squares of
the deviations of the observations from their mean. In symbols, the variance of
the n observations x,, X,,...X, IS

(= X) (X, — %)
n-1

SZ

Variance of 5, 7, 3? Mean is (5+7+3)/3 = 5 and the variance is

(5-5)°+(3-5)*+(7-5)°
3-1 -

Standard Deviation: Square root of the variance. The standard deviation of the
above example is 2.

4
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SHAPE OF DATA

= Shape of data is measured by
= Skewness

» Kurtosis

A B C
25+ 40- 30+
= 150~300pg/mi
— M
20- =
30- 2
- : o
B AL g :
=
£, g g
- & & 10-
' 10+
I r]_
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SKEWNESS

= Measures asymmetry of data
= Positive or right skewed.: Longer right tail
= Negative or left skewed: Longer left tail

Let x,, X,,...X, be nobservations. Then,

\/ﬁzn: (Xi - )_()3
(i (Xi - )—()2j

Skewness =




KURTOSIS

= Measures peakedness of the distribution of data. The
kurtosis of normal distribution is 0.

Let X, X,,...X. be nobservations. Then,

nZn:(xi —X)*

Kurtosis= —'= -3

s




NUMERICAL SUMMARY OF DATA

Sample average:

?:/Yl+/\.‘2+"'+-xn:f:l (31)

Note that the sample average x is simply the arithmetic mean of the n observations. The sam-
ple average for the metal thickness data in Table 3.2 is

X;

5. o

_ 45001 =450.01A
100 100

=
Il
I

Refer to Fig. 3.3 and note that the sample average is the point at which the histogram exactly
“balances.” Thus, the sample average represents the center of mass of the sample data.
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The variability in the sample data is measured by the sample variance:

> (x - %)’ (3.2)

Note that the sample variance is simply the sum of the squared deviations of each obser-
vation from the sample average x, divided by the sample size minus one. If there is no vari-
ability in the sample, then each sample observation x; = x. and the sample variance 57 = 0.
Generally, the larger is the sample variance s°, the greater is the variability in the sample data.

Dol
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THE STANDARD DEVIATION

The units of the sample variance s~ are the square of the original units of the data. This
is often inconvenient and awkward to interpret, and so we usually prefer to use the square root
of 57, called the sample standard deviation s, as a measure of variability.

It follows that

S (x;— %)’
s=| = (3.3)
n—

The primary advantage of the sample standard deviation is that it is expressed in the original
units of measurement. For the metal thickness data, we find that

2 =180.2928 A

and

=13.43A

79 Chapter 3 @



PROBABILITY DISTRIBUTIONS

The histogram (or stem-and-leaf plot, or box plot) is used to describe sample data. A sample
is a collection of measurements selected from some larger source or population. For exam-
ple. the measurements on layer thickness in Table 3.2 are obtained from a sample of wafers
selected from the manufacturing process. The population in this example is the collection of
all layer thicknesses produced by that process. By using statistical methods, we may be able
to analyze the sample layer thickness data and draw certain conclusions about the process that
manufactures the wafers.

A probability distribution is a mathematical model that relates the value of the vari-
able with the probability of occurrence of that value in the population. In other words, we
might visualize layer thickness as a random variable, because it takes on different values in
the population according to some random mechanism, and then the probability distribution of
layer thickness describes the probability of occurrence of any value of layer thickness in the
population. There are two types of probability distributions.

y/
81 Chapter 3 @
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1. Continuous distributions. When the variable being measured is expressed on a
continuous scale, its probability distribution is called a continuous distribution.
The probability distribution of metal layer thickness is continuous.

2. Discrete distributions. When the parameter being measured can only take on cer-
tain values, such as the integers O, 1, 2, . . ., the probability distribution is called
a discrete distribution. For example, the distribution of the number of nonconfor-
mities or defects in printed circuit boards would be a discrete distribution.

82
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Sometimes called a Sometimes called a

probability mass function probability density function
plx;) fx)

A .

plxs)
(x5)
me plxg)
plx) plxg)
X Xo X3 Xy Xg . a b o

(a) (b)

BFIGURE 3.9 Probability distributions. (@) Discrete case. (b) Continuous case.

Will see many examples in the text

83 Chapter 3 @



/EXAMPLE 3.5

A manufacturing process produces thousands of semiconduc-
tor chips per day. On the average, 1% of these chips do not
conform to specifications. Every hour, an inspector selects a
random sample of 25 chips and classifies each chip in the
sample as conforming or nonconforming. If we let x be the

where (i) 25!/[x! (25 — x)!]. This is a discrete distribution,
since the observed number of nonconformances is x = 0, 1,

2, ..., 25, and is called the binomial distribution. We may
calculate the probability of finding one or fewer nonconforming
parts in the sample as

random variable representing the number of nonconforming
chips in the sample, then the probability distribution of x is

p(x)= [ ](0 01)"(0.99)”™*  x=0.1.2.....25
P(x<1)=P(x=0)+P(x=1)
=p(0)+p(1)
- iﬂ( . }(0 01)*(0.99)>*
= 012;; (0.99)>(0.01)° + ,221 (0.99)*(0.01)"

=0.7778+0.1964 = 0.9742

.
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p EXAMPLE 3.6

-

Suppose that x is a random variable that represents the actual
contents in ounces of a l-pound bag of coffee beans. The
probability distribution of x is assumed to be

L

f)=—7 15551170

This is a confinuous distribution, since the range of x is the
interval [15.5, 17.0]. This distribution is called the uniform
distribution, and it is shown graphically in Figure 3.10. Note

that the area under the function f(x) corresponds to probability.
so that the probability of a bag containing less than 16.0 oz is

160 160 1
P{x<16.0} = .[155 J‘155]5

16.0
_ a0 160155 ooon

150155 1.5

This follows intuitively from inspection of Figure 3.9.
/

85

f&x)

Gl

| |
16.5 16.0 16.5 17.0

BFIGURE 3.10 The uniform distribu-

tion for Example 3.6.

.
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The mean U of a probability distribution is a measure of the central tendency in the
distribution, or its location. The mean is defined as

[~ xf(x) dx, x continuous (3.52)

> x; p(.ri- ) x discrete (3.5b)

i=1

7,

For the case of a discrete random variable with exactly N equally likely values [that is, p(x;) =
1/N7], then equation 3.5b reduces to

The mean is the point at which the distribution exactly “balances”.

,5
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N N AN

Median—"" Mode u Mode
(a) (b) (c)

BFIGURE 3.11 The mean of a distribution.

/‘\ /K -
u=10 u=20 u=10
BFIGURE 3.12 Two probability distribu- BFIGURE 3.13 Two probability distributions
tions with different means. with the same mean but different standard deviations.

The mean is not necessarily the 50t percentile of the distribution
(that's the median)

The mean is not necessarily the most likely value of the random
variable (that’s the mode)

"\’l
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The scatter, spread, or variability in a distribution is expressed by the variance o’. The
definition of the variance is

) Ji,(x — y)2 f(x)dx, x continuous (3.6a)
7 i (i = ,U)z P(X,- ). x discrete (3.6b)

i=1

when the random variable is discrete with N equally likely values, then equation 3.6b becomes

and we observe that in this case the variance is the average squared distance of each member of
the population from the mean. Note the similarity to the sample variance 52, defined in equation
3.2.If 6> = 0, there is no variability in the population. As the variability increases, the variance
o~ increases. The variance is expressed in the square of the units of the original variable. For
example, if we are measuring voltages, the units of the variance are (volts)®. Thus, it is custom-
ary to work with the square root of the variance, called the standard deviation o. It follows that

(3.7)

The standard deviation is a measure of spread or scatter in the population expressed in the
original units. Two distributions with the same mean but different standard deviations are
shown in Figure 3.13.

Dol
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3.3 Important Continuous Distributions

The Normal Distribution

The normal distribution is

1.1:—;12
_ 1 ‘E( - ] . - 3.21
f(x)—o_ — <x< (3.21)

The mean of the normal distribution is U (—oo < it < o) and the variance is

o >0.

The normal distribution is used so much that we frequently employ a special notation,
x—=Nu,o 2), to imply that x is normally distributed with mean t and variance G % The visual

appearance of the normal distribution is a symmetric, unimodal or bell-shaped curve and is
shown in Figure 3.16.
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fx)

| | | |
u-30c u-20 u-le u pu+lo u+20 u+ 30

‘*— 68.26% —
95.46%

r o < 99.73% -

BMFIGURE 3.16 The normal distribution. BFIGURE 3.17 Areas under the normal distribution.

.
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The cumulative normal distribution is defined as the probability that the normal random
variable x is less than or equal to some value a, or

o _%ﬁﬁf
f{u&@:F@}:iQRS?EQ o/ dx (3.22)

This integral cannot be evaluated in closed form. However, by using the change of variable

. (3.23)
0]

the evaluation can be made independent of it and ¢~. That is,

P{xia}—P{:ia‘ul:cb[”y]
oo o

where @ (+) is the cumulative distribution function of the standard normal distribution
(mean = 0, standard deviation = 1). A table of the cumulative standard normal distribution is
given in Appendix Table II. The transformation (3.23) is usually called standardization,
because it converts a N(U. 0~) random variable into an N(0, I) random variable.

Dol
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p EXAMPLE 3.7

The time to resolve customer complaints is a critical quality
characteristic for many organizations. Suppose that this time in
a financial organization, say, x—is normally distributed with

Tensile Strength of Paper

mean i =40hours and standard deviation © =2 hours
denoted x ~ N(40, 2%). What is the probability that a customer
complaint will be resolved in less than 35 hours?

SOLUTION
The desired probability is
P{x<35}

To evaluate this probability from the standard normal tables,
we standardize the point 35 and find

35—40}_

P{x<35}= P{z <

P{z<-2.5} = ®(-2.5) = 0.0062

Consequently, the desired probability is
p{x =35} =0.0062

Figure 3.18 shows the tabulated probability for both the N(40,
22) distribution and the standard normal distribution. Note that
the shaded area to the left of 35 hr in Figure 3.18 represents
the fraction of customer complaints resolved in less than or
equal to 35 hours.

/

105

0.0062

35 40

0.0062

-2.5 0

BFIGURE 3.18 Calculation of P{x <35} in
Example 3.7.
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4 EXAMPLE 3.9

Sometimes instead of finding the probability associated with a
particular value of a normal random variable, we find it neces-
sary to do the opposite—find a particular value of a normal

SOLUTION

random variable that results in a given probability. For exam-
ple. suppose that x ~ N(10, 9). Find the value of x—say, a—
such that P{x > a} = 0.05.

From the problem statement, we have

P{x>a}:P{z > a;lO

} =0.05

or

106

From Appendix Table II. we have P{z < 1.645} = 0.95, so

a-10 _ | 645

or

a=10+3(1.645)=14.935

Dol
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The normal distribution has many useful properties. One of these is relative to linear

combinations of normally and independently distributed random variables. If x, x,. .., x,
are normally and independently distributed random variables with means t,, t>. ..., u,, and
variances 07, 03, . . . . 0., respectively, then the distribution of

_‘_\" = GI J‘.‘] + (12)(.-2 +---+ an)’:n

1s normal with mean

My =ailly +axlly +-+a, 1, (3.27)
and variance

Oy, =a[C| +ay05 +-+a,0, (3.28)
where a,, a,, . . ., a, are constants.

Dol
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THE CENTRAL LIMIT THEOREM

The Central Limit Theorem If x,. x, . . ., x, are independent random variables with
mean u; and variance o7, and if y=x, + X, + - - - + x,,, then the distribution of

n
V=2 H;
i=1

|Zoi

approaches the N(0, 1) distribution as n approaches infinity.

Practical interpretation — the sum of independent random

variables is approximately normally distributed regardless of
the distribution of each individual random variable in the sum

108 Chapter 3 @
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Check Sheets

Detect | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday
Types/Event :
Occurrences |

Crooked Needie I 1] | i ] 12

Crimped Needie ||| | i I | 16
Hub

Whole in needle i i i I Hin 25
Sheath

No-fill volume I" | I" I" 8

Low fill volume | | 2







Constructing a Fishbone Diagram







Constructing a Fishbone
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Why use a Histogram




What Does a Histogram Do?




How do | do it?

1. Decide on the process measure

e The data should be variable data, i.e., measured on a continuous scale. For
example: temperature, time, dimensions, weight, speed.

2. Gather data

e  Collect at least 50 to 100 data points if you plan on looking for patterns and
calculating the distribution’s centering (mean), spread (variation), and
shape. You might also consider collecting data for a specified period of time:
hour, shift, day, week, etc.

e Use historical data to find patterns or to use as a baseline measure of past
performance.



How do I do 1t? (cont’d)

3. Prepare a frequency table b. Determine the range, R, for the entire

from the data sample. The range is the smallest
a. Count the number of data value in the set of data subtracted from
points, n, in the sample the largest value. For our example:
99 93] 102] 94] 10.1] 9.6] 9.9] 101 9.8 R =X pax = Xmin = 10.7-9.0 = 1.7
9.8 9.8| 10.1] 9.9 9.7] 9.8 9.9 10| 9.6
9.7] 9.4| 9.6 10( 9.8 9.9| 10.1| 104 10 .
10.2| 10.1| 9.8| 10.1| 10.3| 10| 10.2| 9.8| 10.7 c. Determine the number of class
9.9] 10.7] 9.3| 10.3[ 9.9 9.8 10.3[ 9.5 9.9 :
9.3 10.2] 9.2) 9.9 9.7 99| 9.8 95 94 Intervals’ k’ needed'
9 95| 9.7 9.7 98 98 93 9.6 9.7 .
10[ 9.7[ 9.4/ 9.8 9.4| 96| 10| 103| 938 Use the table below to prowde a
9.5 9.7] 10.6|/ 9.5 10.1] 10| 9.8f 10.1] 9.6 ; ) e e . ]
9.6| 9.4|10.1| 95| 10.1| 10.2| 9.8/ 95| 9.3 guideline for dividing your sample into
10.3] 9.6 9.7 9.7{ 10.1] 9.8 9.7 10| 10
oc| ol o8l 9ol 92| 10l 10l 97l 97 reasonable number of classes.
9.9] 10.4| 9.3| 9.6 10.2 9.7 9.7 9.7( 10.7
9.9 10.2] 9.8 9.3 9.6] 9.5| 9.6 10.7 Number Of Number Of
Data Points Classes (k)
In this example, there are 125 data Under 50 5.7
points, n = 125. For our example, 50-100 6-10
125 data points would be divided 100-250 7-12

into 7-12 class intervals. Over 250 10-20




How do I do 1t? (cont’d)

Tip: The number of intervals can influence the pattern of the
sample. Too few intervals will produce a tight, high pattern.
Too many intervals will produce a spread out, flat pattern.

d. Determine the class width, H.

The formula for this is:
H=R=1.7=0.17
k=10
Round your number to the nearest value with the same
decimal numbers as the original sample. In our
example, we would round up to 0.20. It is useful to

have intervals defined to one more decimal place than
the data collected.

e. Determine the class boundaries, or end points.

Use the smallest individual measurement in the
sample, or round to the next appropriate lowest round
number. This will be the lower end point for the first
class interval. In our example this would be 9.0.




How do I do 1t? (cont’d)

Add the class width, H, to the lower end point. This will be the
lower end point for the next class interval. For our example:

9.0+ H=9.0+0.20=9.20

Thus, the first class interval would be 9.00 and everything up to,
but not including 9.20, that is, 9.00 through 9.19. The second
class interval would begin at 9.20 and everything up to, but not
including 9.40.

Tip: Each class interval would be mutually exclusive, that is, every
data point will fit into one, and only one class interval.

Consecutively add the class width to the lowest class boundary
until the K class intervals and/or the range of all the numbers
are obtained.




How do I do 1t? (cont’d)

f. Construct the frequency table based on the values you

computed in item “e”.

A frequency table based on the data from our example is
show below.

Class Class Mid-

# Boundaries Point Frequency Total
1 9.00-9.19 9.1 | 1
2 9.20-9.39 9.3 1 9
3 9.40-9.59 9.5 W T T 16
4 960979 97 LT T T i 27
5 9.80-9.99 9.9 W T M T T T 31
6 10.00-10.19 10.1 W T T T 22
7 10.20-10.39 10.3 T T 12
8 10.40-10.59 105 || 2
9 10.60-10.79 10.7 T 5
10 10.80-10.99 10.9 0




How do | do it? (cont’d)

4. Draw a Histogram from the frequency table
e  On the vertical line, (y axis), draw the frequency (count) scale to cover
class interval with the highest frequency count.
e  On the horizontal line, (x axis), draw the scale related to the variable
you are measuring.
e  For each class interval, draw a bar with the height equal to the
frequency tally of that class.
Specifications

Spec.
407 Target 9+/-15 USL

30

Frequency

10 -

9.0 9.2 9.4 9.6 9.8 10.0 10.2. 10.4 10.6 10.8

Thickness



How do | do it? (cont’d)

5. Interpret the Histogram
a. Centering. Where is the distribution centered?
b. Isthe process running too high? Too low?

Customer /

Requirement

Process
centered

Process
too high

Process
too low



How do | do it? (cont’d)

b. Variation. What is the variation or spread of the data?

Is it too variable?

Customer

/ Requirement\

Process
within
requirement
S

Process too
variable



How do | do it? (cont’d)

C. Shape. What is the shape? Does it look like a normal, bell-shaped

distribution? Is it positively or negatively skewed, that is, more data values to

the left or to the right? Are there twin (bi-modal) or multiple peaks?

Tip: Some processes are
naturally skewed; don’t expect
every distribution to follow a
bell-shaped curve.

Tip: Always look for twin or

multiple peaks indicating that

the data is coming from two or l—l—

more different sources, e.g., Normal Distribution
shifts, machines, people,

suppliers. If this is evident, M.U|it.-|\/|0.da|
stratify the data. Distribution
Bi-Modal
Distribution
] ] [ []
Positively Negatively
Skewed Skewed
— I — A




How do | do it? (cont’d)

d. Process Capability. Compare the results of your Histogram to your customer
requirements or specifications. Is your process capable of meeting the
requirements, i.e., is the Histogram centered on the target and within the

specification limits?

Upper Specification

Lower — A

Specification Target Limit

Limit \ @ Centered and well within
customer limits.

’_,—,— —|—|_‘ Action: Maintain present

state

(b) No margin for error.

Action: Reduce variation |—'— —|_|
(c) Process running low. Defective
product/service.
Action: Bring average closer to
—J ] | target.
-
(d) Process too variable.
Defective
product/service.
Action: Reduce .—H—|—'— —
variation (e} Process off center and too variable.
Defective product/service.
Action: Center better and reduce
'_|—'— variation
—] —|—|




How do I do 1t? (cont’d)

Tip: Get suspicious of the accuracy of the data if the Histogram
suddenly stops at one point (such as a specification limit) without
some previous decline in the data. It could indicate that defective

product is being sorted out and is not included in the sample.

Tip: The Histogram is related to the Control Chart. Like a Control
Chart, a normally distributed Histogram will have almost all its
values within +/-3 standard deviations of the mean. See Process

Capability for an illustration of this.







Pareto Chart 158

Defects, Incorrect Pricing and Wrong Product Account for 80% of Returns
2500 100%
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The Basic Seven Tools of Quality
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The Basic Seven Tools of Quality







The Basic Seven Tools of Quality










Statistical Process Control (SPC)




Natural Variations
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Assignable Variations
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Types of Variations

Z
?
¢
2

at

% p’ e /4/ 141/4 o
ontr &W/%//
/

J

//;/4 A Z 4
/ﬁ/ G, - Y “ 2 [ A "
///// //y Y Gt V < /ééé//

&

olav pr
'/
Z A0
/,,7////4227//
“YOCE
A00E55 Uc ?V%%%M////«
B
4180 / / e



Process
Variation




Variation from Common Causes

/
/

\

\ _7
/ \~

Y \

PREDICTION

/r\
|
|
|

SIZE —



Variation from Special Causes

PREDICTION

SIZE —— g



HU H|# |\ #H|#H B H|H|#H

A N oW
AR SRS

N\

D B

/%/ X
¥ ve



Samples

easy ‘ocess. we take samples and
i
//////////// A i s 9%, ) /// //

ng e

/?5'// ”fﬁé*/} A
ool
At

Y,

)
w

{ @, '/,//////4%4;/4/4

e o e

gz 52:}42 “,
7% ///
17

Lers

]
it
£
]




Samples

%

) )
nawwze v

7 : t o e

g . AT Y\ 'XTY s
% ? //2/9( ¥ -
£,
fl )

C) 202 ale 1dlly vypbe » ‘
// 7 4 /

29 e 2ITNS 01 cenual tenaency (ne

4
gt e “ P . R
1,,4{(,,2 et iex

&




,,,ﬁa "\ £
LA
3 n by

= M ///%/////

over . \

J SRl | 8 4%%% .

Smiminismg /%////%/
HATS A=A
T s Qe /////V//;/ff/
W o R ) ,.,?/ -
oMZ,MW %n,é
// u,////ﬂﬂﬂ /J/?/ z/

g~
3] =8
oo g
TR Ay
S W
///4 )
//1/ //
S
R
W/ peng
,//” )
- =
X / e
® /////, X
3 %, &
2/ J

vt {49 )
)




Samples

]
/5; /2 ¥

Y'Y 7 B TYE //,,///,f;, Y < T2ATITONM

o

229

o

211 AsalanNable Calses
NI DD OUutbul 1>

.

NN LT I DaAaninic ad2rmaunaug
/,"?/%’ AocirtiNnanio v

.29 : 25 %

Ive

/;4;/’0¢{1/24/$/{, 2, w M
neuui.anlic

I




Control Charts

e
A

//,
TCOTY

p % «
N

///’é?%//i//?fw;//// J ///2%/%/ ] %%;/'r/(.é/f/’/// 1 7% 5,% /9'///{%4//

%
7%7"”’?727/
o
L Ll n F
”5:9:?%/2,/’ 719

Z
A, 4

%2




Statistical Process Control

o

/,,' 4// 17 /,7/}//9,;“,0445/2/:/

ro

81912 7.6

“

/,///// 4 e
jéu’/zuz!é;?/;g'/;g/fx;’zg
CONU O HINMIS

— | W / g




=
o
o
[
L
—
b —

Lim

Central

M ¢

S /
//,7///,
3 ,7///./

' — M//MM

-
WER
< 3 e
AW
////i, W

o

=
L

/

o

o & O
&

R 8

)

A\
b W AN
/5/%. b

- / S5

AALAAAN,

¥ S8 /

.h .”/ AR
SR

N 2
g -
® “// [
Qe Ay
Y 3 -
I3 ALY SN
4/

v H S %/W%

- M///f///f
%/1///////////
¥ 8 3%
N ﬁ/ D
//,// //////////
NN )

)

=
2
o
)
L

g %ﬂ% \
w%%%%mw ﬁ

= M/M
S A

®

— et
— TATs
%

~

-
5 .
.

N

S
e
o

/%//
3 M%QW N

NS

3

~ ////w RN
s




Population and Sampling Distributions

“
iy
g

'

N ytion o
>k Ne nicall.

-
e







haractenstics thha , 21eci-relalec
aa ISLIL >

Y A3 n 191 /fx, 1D

e
w

oA

o










Process Capability

Process capability refers to the uniformity of the process. Obviously, the variability
of critical-to-quality characteristics mn the process 1s a measure of the uniformity of out-
put. There are two ways to think of this variability:

1. The natural or inherent variability in a critical-to-quality characteristic at a spec-
ified time: that 1s, “instantaneous™ variability

2. The vanability 1n a critical-to-quality characteristic over time

Natural tolerance limits are defined as follows:

UNTL =u+30
INTL=pu-36 0.00135

0.00135

-+ Il,.t |
LNTL 3o 3o UNTL
Process mean

BFIGURE 8.1 Upperand lower natural tolerance
limits in the normal distribution.

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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We define process capability analysis as an engineering study to estimate process capa-
bility. The estimate of process capability may be in the form of a probability distribution
having a specified shape, center (mean), and spread (standard deviation). For example, we
may determine that the process output is normally distributed with mean ¢ = 1.0 cm and
standard deviation g = 0.001 cm. In this sense, a process capability analysis may be per-
formed without regard to specifications on the quality characteristic. Alternatively, we
may express process capability as a percentage outside of specifications. However, speci-

fications are not necessary to process capability analysis.

Uses of process capability data:

Chapter 8

7 T R PC R S p—

Predicting how well the process will hold the tolerances

Assisting product developers/designers in selecting or modifying a process
Assisting in establishing an interval between sampling for process monitoring
Specifying performance requirements for new equipment

Selecting between competing suppliers and other aspects of supply chain
management

Planning the sequence of production processes when there 1s an interactive effect
of processes on tolerances

Reducing the variability in a manufacturing process

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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Reasons for Poor Process Capability

LSL u USL LSL u UsL
(a) (b)

B FIGURE 8.3 Some reasons for poor process capability. (a) Poor process centering. (/) Excess process

variability.

Process may have
good potential
capability

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 199
Copyright (c) 2012 John Wiley & Sons, Inc.



8.2 Process Capability Analysis Using a Histogram or a Probability Plot

8.2.1 Using the Histogram

The histogram can be helpful in estimating process capability. Alternatively, a stem-and-leaf
plot may be substituted for the histogram. At least 100 or more observations should be avail-
able for the histogram (or the stem-and-leaf plot) to be moderately stable so that a reasonably
reliable estimate of process capability may be obtained. If the quality engineer has access to
the process and can control the data-collection effort, the following steps should be followed
prior to data collection:

L.

2.

3.

4.

Choose the machine or machines to be used. If the results based on one (or a few)
machines are to be extended to a larger population of machines, the machine selected
should be representative of those in the population. Furthermore, if the machine has
multiple workstations or heads, it may be important to collect the data so that head-
to-head variability can be isolated. This may imply that designed experiments should be
used.

Select the process operating conditions. Carefully define conditions, such as cutting
speeds, feed rates, and temperatures, for future reference. It may be important to study
the effects of varying these factors on process capability.

Select a representative operator. In some studies, it may be important to estimate oper-
ator variability. In these cases, the operators should be selected at random from the pop-
ulation of operators.

Carefully monitor the data-collection process, and record the time order in which each
unit 1s produced.

The histogram, along with the sample average ¥ and sample standard deviation s,

provides information about process capability. You may wish to review the guidelines for
constructing histograms in Chapter 3.

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.

Copyright (c) 2012 John Wiley & Sons, Inc.

200



/EXAM (> ]l =¥: B Estimating Process Capability with a Histogram

Figure 8.2 presents a histogram of the bursting strength of 100
glass containers. The data are shown in Table 8.1. What is the
capability of the process?

SDLUTION

Analysis of the 100 observations gives Furthermore, the shape of the histogram implies that the
distribution of bursting strength is approximately normal.
Thus, we can estimate that approximately 99.73% of the bot-
tles manufactured by this process will burst between 168 and
360 psi. Note that we can estimate process capability indepen-
XE3s dently of the specifications on bursting strength.

¥=264.06 §=32.02

Consequently, the process capability would be estimated as

or

264.06 +£3(32.02)= 264 + 96 psi

= TABLE 8.1

40 Bursting Strengths for 100 Glass Containers
L ____________________________________________________________________________________|]

265 197 346 280 265 200 221 265 261 278
205 286 317 242 254 235 176 262 248 1250

g 20 263 274 242 260 281 246 248 271 260 265
% 307 243 258 321 294 328 263 245 274 270
i o0 - 220 231 276 228 223 296 231 301 337 298
268 267 300 250 260 276 334 280 250 257

260 281 208 299 308 264 280 274 278 210

10 - 234 265 187 258 235 269 265 253 254 280

299 214 264 267 283 235 272 287 274 269
215 318 271 293 277 290 283 258 275 1251

170 190 210 230 250 270 290 310 330 350
Bursting strength (psi)

BFIGURE 8.2 Histogram for the bursting-
strength data.

N J/

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.

201



8.3 Process Capability Ratios

Chapter 8

8.3.1 Use and Interpretation of C,

It is frequently convenient to have a simple, quantitative way to express process capability.
One way to do so is through the process capability ratio (PCR) C, first introduced in
Chapter 6. Recall that

_ USL-LSL
6

C

, 8.4)

where USL and LSL are the upper and lower specification limits, respectively. C, and other
process capability ratios are used extensively in industry. They are also widely misused. We
will point out some of the more common abuses of process capability ratios. An excellent
recent book on process capability ratios that is highly recommended is Kotz and Lovelace
(1998). There is also extensive technical literature on process capability analysis and process
capability ratios. The review paper by Kotz and Johnson (2002) and the bibliography (papers)
by Spiring, Leong, Cheng, and Yeung (2003) and Yum and Kim (2011) are excellent sources.

In a practical application, the process standard deviation @ is almost always unknown
and must be replaced by an estimate @. To estimate 0 we typically use either the sample stan-
dard deviation s or R/d> (when variables control charts are used in the capability study). This
results in an estimate of Cp—sa}f,

& USL-LSL

= (8.5)
P 60

Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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L5L UsL

» C,does not take /P\E ,-2.0
. ' =20

process centering “ . . &

Into account

ﬂ:=2 EF=2.G
C'I.,*= 1.5

* Itis a measure ®) Al
of potential

capability, not o= 2)4\ ¢,=20
I Coe= 1.0
actual capability @ L
C,=2.0
T = Exm= 0.5
fe) | | | =

38 44 50 56 62 B5
BFIGURE 8.8 Relationship of Cp and Cp.

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. 203
Copyright (c) 2012 John Wiley & Sons, Inc.



A Measure of Actual Capability

C

o =min(C,,.C,,| (8.9)

Note that C,; is simply the one-sided PCR for the specification limit nearest to the process
average. For the process shown in Figure 8.8h, we would have

C, =min(Cp,.C, )

pk
:min(cpu:USL—,u‘Cf:,u—LSL]
. 3o P 3o
- -3
=min[Cu=ﬁ:2 53=1.5,C’,=M=2.5
T 32) T3
=135

Generally, if C, = Cpy, the process is centered at the midpoint of the specifications, and when
Cpi < C,, the process is off center.

Chapter 8 Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Copyright (c) 2012 John Wiley & Sons, Inc.
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Process Capability

Preset product or service dimensions, tolerances: bottle fill might be 16 oz. +.2 oz.
(15.80z.-16.20z.)

Based on how product is to be used or what the customer expects

Assessing capability involves evaluating process variability relative to preset product
or service specifications

assumes that the process is centered in the specification range
_ specificatonwidth  USL - LSL

Cp :
rocess width 6o
helps to address a possible lack of centering of the process

USL —p u—LSLj
36 36

205
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Relationship between Process Variability
and Specification Width

Three possible ranges for Cp

— Cp=1,asinFig. (a), process
variability just meets specifications

e . : ;3;" < N — Cp <1, as in Fig. (b), process not
- 157 158 159 16.0 16.1 bS58 159 16.0 16l ; Capa:b'le Of prod uCIng Wlthln
I Process Variabilty 436 j——— Process Variabilty 30 specifications

(a) Process variability meets specification width (b) Process variability outside specification width

— Cp =1, as in Fig. (¢), process
exceeds minimal specifications

«  One shortcoming, Cp assumes that the
process is centered on the specification
range

957 158 159 160 161 18
Mean

|« Process |
Variability
+30

«  Cp=Cpk when process is centered

(c) Process variability within specification width
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Computing the Cp Value at Cocoa Fizz: 3 bottling machines are being evaluated for
possible use at the Fizz plant. The machines must be capable of meeting the design
specification of 15.8-16.2 oz. with at least a process capability index of 1.0 ( )

The table below shows the information gathered
from production runs on each machine. Are

they all acceptable?

Machine| o |USL-LSL| 60
A .05 4 3
B 1 4 .6
C 2 4 1.2

— Machine A

Cp USL - LSL

4

6o
— Machine B

Cp=

— Machine C

Cp=

- ~1.33
6(.05)
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Computing the Cpk Value at Cocoa Fizz

» Design specifications call for a target

e ':'SL value of 16.0 0.2 O7.

(USL =16.2 & LSL =15.8)

» Observed process output has now
shiftedand hasa 1 of 15.9 and a

¢ of 0.1 oz.
57 158 159 160 161 162 16
Mean
P © Cpkis less than 1, revealing that the

process is not capable
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In 1980°s, Motorola coined
to describe their higher
quality efforts

guality standard is now a
benchmark in many industries

— Before design, marketing ensures
customer product characteristics

— Operations ensures that product design
characteristics can be met by
controlling materials and processes to
6o levels

— Other functions like finance and
accounting use 6o concepts to control
all of their processes

+6 Sigma versus -

Number of defects

2600 ppm
34 ppm \

\

- 3 Sigma

Mean
+30

A

160
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